муниципальное бюджетное общеобразовательное учреждение «Средняя школа с. Александровка муниципального образования «Мелекесский район» Ульяновской области»

Рассмотрена на заседании педагогического совета

Протокол № <u>Р</u> от 21.06.2024

УТВЕРЖДАЮ И.О.директора МБОУ «Средняя школа с. Александровка»

Григорьева С.І

Приказ № \$2 от 21.06.20

Дополнительная общеобразовательная общеразвивающая программа

естественнонаучной направленности «Цифровая лаборатория физического эксперимента» (базовый уровень)

Возраст обучающихся: **14-15 лет** Срок реализации: **1 года обучения** Объем программы: **72 часа**

Автор-составитель: Кривова Елена Павловна педагог дополнительного образования.

Александровка, 2024г.

Структура дополнительной общеразвивающей программы

1. Комплекс основных характеристик программы	3
1.1. Пояснительная записка	3
1.2. Цель и задачи программы	10
1.3. Планируемые результаты освоения программы	11
1.4. Содержание программы	13
2. Комплекс организационно-педагогических условий	16
2.1. Календарно-учебный график	16
2.2. Условия реализации программы	23
2.3. Формы аттестации	24
2.4. Методические материалы	27
Список литературы	30
Приложения	32

1. Комплекс основных характеристик программы

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Цифровая лаборатория физического эксперимента» реализует с учетом материально- технической базы Центра образования естественнонаучной направленности «Точка роста».

Программа составлена на основе следующих **нормативных** документов:

- Федеральный закон от 29.12.2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- Федеральный закон от 21.07.2014 года № 212-ФЗ «Об основах общественного контроля в Российской Федерации»;
- Распоряжение Правительства РФ от 4 сентября 2014 № 1726-р «Об утверждении Концепции развития дополнительного образования детей»;
- Приказ Министерством просвещения Российской Федерации от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказ от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Методические рекомендации по проектированию независимой оценки качества образовательной деятельности организации, осуществляющих образовательную деятельность, направленные письмом Министерства образования и науки Российской Федерации от 01.04.2015 № АП-512/02;
- СанПин 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ от 18.11.2015 года № 09-3242;
- Устав МБОУ «Средняя школа с. Александровка»;
- Локальные акты МБОУ «Средняя школа с. Александровка»:

Нормативные документы, регулирующие использование электронного обучения и дистанционных технологий:

- Приказ Министерства образования и науки РФ от 23.08.2017 года № 816 «Порядок применения организациями, осуществляющих образовательную деятельность электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего общего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий».

Программа имеет **естественнонаучную направленность**, так как ориентирована на формирование научного мировоззрения, освоение методов научного познания мира, развитие исследовательских способностей обучающихся.

Уровень программы — базовый. Предполагает использование и реализацию общедоступных и универсальных форм организации материала, минимальную сложность предлагаемого для освоения содержания программы.

Актуальность программы заключается в том, что дополнительная общеобразовательная общеразвивающая программа «Цифровая лаборатория физического эксперимента» имеет социальную значимость для нашего общества. Российскому обществу нужны образованные, нравственные, предприимчивые люди, которые могут самостоятельно принимать ответственные решения в ситуациях выбора, прогнозируя их возможные последствия. Одной из задач сегодняшнего образования — воспитание в учащемся самостоятельной личности.

Предлагаемая программа способствует развитию у учащихся самостоятельного мышления, формирует у них умения самостоятельно приобретать и применять полученные знания на практике. Развитие и формирование вышеуказанных умений возможно благодаря стимулированию научно-познавательного интереса во время занятий.

Концепция современного образования подразумевает, что в учебном эксперименте ведущую роль должен занять самостоятельный исследовательский ученический эксперимент. Современные экспериментальные исследования по физике уже трудно представить без

использования не только аналоговых, но и цифровых измерительных приборов. В Федеральном государственном образовательном стандарте прописано, что одним из универсальных учебных действий, приобретаемых учащимися, должно стать умение «проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов».

Отличительной особенностью можно считать комплексный подход к обучению. Он основывается на межпредметных связях: биологии, химии, физики, естествознания, окружающего мира, истории и других общеобразовательных предметов, охват своей деятельностью на обновленной материально-технической базе центра «Точка роста». Методические особенности реализации программы предполагают сочетание возможности развития индивидуальных творческих способностей и формирование умений взаимодействовать в коллективе, работать в группе. Цифровое учебное оборудование позволяет учащимся ознакомиться с современными методами исследования, применяемыми в науке, а педагогу применять на практике современные педагогические технологии. Цифровая лаборатория кардинальным образом изменяет методику и содержание экспериментальной деятельности. Широкий спектр цифровых датчиков позволяет учащимся знакомиться с параметрами физического эксперимента не только на качественном, но и на количественном уровне. С помощью цифровой лаборатории можно проводить длительный эксперимент даже в отсутствии экспериментатора. При этом измеряемые данные и результаты их обработки отображаются непосредственно на экране компьютера.

Инновационность программы состоит в том, что программа дает возможность раскрыть экспериментальную часть физики с цифровой точки зрения, взглянуть на решение экспериментальной задачи под новым углом достижения максимального результата. Во время экспериментов учащиеся используют цифровую лабораторию по физике ЛЦИ-16(32), измерения и регистрации различных представленную датчиками для параметров, И программное обеспечение, визуализирующее экспериментальные данные на экране. При этом эксперимент остаётся традиционно натурным, НО полученные экспериментальные данные

обрабатываются и выводятся на экран в реальном масштабе времени и в рациональной графической форме, в виде численных значений, диаграмм, графиков и таблиц. Основное внимание учащихся при этом концентрируется не на сборке и настройке экспериментальной установки, а на проектировании различных вариантов проведения эксперимента, накоплении данных, их анализе и интерпретации, формулировке выводов. Эксперимент как исследовательский метод обучения увеличивает познавательный интерес учащихся к самостоятельной, творческой деятельности.

Использование цифровой лаборатории позволяет обучающемуся получить представление о смежных образовательных областях: информационные технологии; цифровые измерительные и электронно-вычислительные устройства; математические функции и графики математическая обработка экспериментальных данных, статистика, приближенные вычисления; методика проведения исследований, составление отчетов, презентация проделанной работы. Стираются границы между отдельными школьными предметами и учебными действиями. Основной уклон деятельности учащегося направлен не в сторону «принятия и запоминания информации», а в сторону «созидания» - создание своих собственных проектов и самостоятельного проведения лабораторных экспериментов, с целью наглядного усвоения информации. Таким образом, программа позволяет реализовать конвергентный подход.

Дополнительность программы «Цифровая лаборатория физического эксперимента» состоит в том, что занятия по программе интегрируют теоретические знания и практические умения учащихся, а также способствуют формированию у них навыков проведения творческих работ учебно-исследовательского характера.

Адресат программы. Возраст обучающихся, участвующих в реализации данной дополнительной общеобразовательной программы — 14-15 лет. Условия набора обучающихся: принимаются все желающие вне зависимости от пола, уровня подготовки, имеющихся знаний и умений. Наполняемость в группе составляет 12 человек. Состав группы — постоянный.

Возрастные особенности. В возрасте 14-15 лет для ребенка резко возрастает значение коллектива, его общественного мнения, отношений со сверстниками, оценки ими его поступков и действий. Он стремится завоевать в их глазах авторитет, занять достойное место в коллективе. Заметно проявляется стремление к самостоятельности и независимости, возникает интерес к собственной личности, формируется самооценка, развиваются абстрактные формы мышления. Часто он не видит прямой связи между привлекательными для него качествами личности и своим повседневным поведением.

В связи с этим основная форма проведения занятий — это практические работы, в ходе которых у детей появляется возможность продемонстрировать свои индивидуальные и коллективные решения поставленных задач.

В этом возрасте в организме учащихся происходят значительные изменения, обусловленные физиологической перестройкой организма. На данном этапе учеба перестает быть основной и главной задачей подростка, а ведущей деятельностью в этом возрасте становится личностное общение со сверстниками. Поэтому важной задачей педагога на этом этапе становится стимулирование, поддержка и развитие познавательной активности подростка. В тоже время подростковый возраст характеризуется развитием познавательных процессов. Наряду с теоретическим мышлением у подростка развивается логическое мышление. В подростковом возрасте активно развивается логическая память и быстро достигает того уровня, при котором учащийся переходит преимущественно

к использованию именно этого вида памяти. При должном руководстве педагога происходит перестройка памяти: увеличивается запас приемов опосредованного запоминания, частота их использования и количество учащихся, пользующихся ими. Учащиеся учатся выделять опорные моменты текста, проводят смысловую группировку, намечают устный план информации. Главное место в подготовке информации начинает занимать анализ содержания материала, его внутренней логики.

Объем и сроки освоения программы. Программа рассчитана на одно год. Общее количество часов по программе составляет 72 часа.

Формы обучения: очная, в отдельных случаях для достижения учебных целей предусмотрено использование дистанционных форм обучения. С целью поддержки обучающихся с особыми познавательными запросами могут использоваться такие дистанционные формы обучения, как участие в конкурсных мероприятиях в сети Интернет.

Особенности организации образовательного процесса.

При *очной* организации обучения занятия будут проводится на базе Центра образования естественнонаучной и технологической направленностей «Точка Роста» в физической лаборатории.

Базовой формой обучения по данной дополнительной общеразвивающей программе является практическая деятельность учащихся. Приоритетными методами её организации служат практические работы и на более поздних этапах – проектная деятельность. Все виды практической деятельности в программе направлены на освоение различных технологий работы с компьютером, информацией, цифровой лабораторией, программным обеспечением, сопутствующей документацией методическими материалами. Большое внимание уделяется обеспечению безопасности труда обучающихся при выполнении различных работ, в том числе по соблюдению правил электробезопасности.

Формы организации образовательного процесса — коллективная, групповая, работа в микрогруппах, индивидуальная в рамках группы.

По характеру учебной деятельности — беседы (вопросно-ответный метод активного взаимодействия педагога и обучающихся на занятиях, используется в теоретической части занятия); защита практической работы (используется на творческих отчетах, фестивалях, конкурсах, как итог проделанной работы); практические занятия (проводятся после изучения

теоретических основ с целью сборки установок и отработки результатов экспериментальных исследований); наблюдение (применяется при изучении какого-либо объекта, предметов, природных явлений).

На занятиях создается атмосфера доброжелательности, доверия, что во многом помогает развитию творчества и инициативы ребенка. Выполнение экспериментальных заданий помогает ребенку в приобретении устойчивых

навыков работы с различными цифровыми датчиками и лабораторным оборудованием.

При необходимости используется *дистанционное* обучение. Виды занятий при организации дистанционного обучения: ofline-занятие (видеозанятие в записи); презентации с текстовым комментарием; online-занятие (online-видеолекция; online-консультация); фрагменты и материалы образовательных интернет-ресурсов; чат-занятия (участники имеют одновременный доступ к чату); адресные дистанционные консультации.

Дистанционное обучение организуется через платформу *Сферум* (https://sferum.ru), которая позволяет заводить в ней групповые чаты, совершать видеозвонки без ограничения по времени, размещать видео, презентационный материал с инструкцией выполнения заданий, мастерклассы.

Продолжительность занятий при дистанционном обучении составляет 30 минут с перерывами 10 минут. Первые 30 минут отводится на теоретическую часть. Вторые 30 минут в офлайн режиме самостоятельная работа учащихся над практической частью, которая может быть представлена проектной деятельностью, исследованиями, кейсами. В ходе проведения занятия в дистанционном режиме предусматривается обратная связь педагога с обучающимся по результатам выполненного задания. Результат своей деятельности, обучающийся может представить в виде фотографии, видеозаписи, отчета, плана эксперимента, которые может разместить в социальной сети с использованием платформы *Сферум*. Кроме этого возможно использование облачных технологий.

Программой предусмотрены следующие методы воспитания:

- формирования сознания личности (взглядов, оценок): рассказ, показ, обсуждение и анализ образца, опыта, исследования, факта из жизни ученыхфизиков.
- формирование социального опыта (взаимодействие в группе сверстников в познавательной, трудовой, исследовательской, досуговой деятельности).
- стимулирование и коррекция действий (участие в конкурсах, массовых тематических мероприятиях, поощрения).

Режим занятий. Продолжительность занятий установлена на основании СанПин 2.4.4.3172-14: «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей». Занятия проводятся 1 раз

в неделю, по 2 часа: первая часть занятия длится 40 минут, за которой следует перерыв (10 минут), вторая часть занятия также составляет 40 минут.

При дистанционном обучении продолжительность онлайн-занятия, а также время самостоятельной работы учащихся среднего школьного возраста за компьютером, планшетом или другим электронным носителем не должно превышать 30 минут.

1.2. Цели и задачи программы

Цель программы: формирование целостной картины изучаемых природных явлений, освоение элементов исследовательской деятельности с использованием цифровой образовательной среды.

Задачи дополнительной общеразвивающей программы:

Образовательные:

- сформировать понимание всеобщей связи явлений природы;
- узнать принцип работы датчиков цифровой лаборатории по физике;
- сформировать навыки составления алгоритмов обработки экспериментальных результатов в оболочке программы цифровой образовательной среды;
- сформировать навыки работы с цифровыми датчиками и вспомогательным лабораторным оборудованием;
- уметь анализировать экспериментальные данные и их представление в графическом или другом символьном виде.
- сформировать навыки исследовательской деятельности по физике в процессе анализа и обработки экспериментальных данных для обоснования и аргументации рациональности деятельности в рамках проектной деятельности.

Развивающие:

- развивать интерес к физике, как экспериментальной науке;
- способствовать совершенствованию взаимодействия обучающихся с современными цифровыми образовательными ресурсами;
- способствовать развитию творческих способностей каждого ребенка на основе личностно-ориентированного подхода;
- развивать способность обучающихся самостоятельно приобретать знания;
- способствовать развитию организационных умений обучающихся.

Воспитательные:

- сформировать ответственный подхода к решению экспериментальных задач;
- сформировать навыки коммуникации среди участников программы;
- сформировать навыки командной работы.

1.3. Планируемые результаты освоения программы

Освоение учащимися дополнительной общеобразовательной общеразвивающей программы «Цифровая лаборатория физического эксперимента» направлено на достижение комплекса результатов в соответствии с концепцией развития системы дополнительного образования.

Предметные:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- методами научного исследования явлений умения пользоваться наблюдения, планировать природы, проводить И выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы.

Личностные:

- развитие познавательных интересов, интеллектуальных и творческих способностей;
- убеждённость в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам

- науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности на основе личностноориентированного подхода;
- формирование ценностного отношения друг к другу, к учителю, к авторам открытий и изобретений, к результатам обучения.

Метапредметные:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять образной, информацию словесной, символической формах, перерабатывать полученную анализировать И информацию соответствии \mathbf{c} поставленными задачами, выделять основное прочитанного текста, нём содержание находить В ответы поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников, и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

1.4. Содержание программы Учебный план

		IC	Всего ч	асов	Формы
Nº	Наименование раздела/темы	Количество часов	Теория	Практи ка	- контроля/ аттестации
1	введение	2	1	1	
1.1	Вводное занятие. Инструктаж по технике безопасности.	2	1	1	Устный опрос
2	измерения в физике	8	2	6	
2.1	Измерение физических величин	2	0,5	1,5	Анализ результатов работы
2.2	Точность измерений. Погрешность.	2	0,5	1,5	Наблюдение
2.3	Обработка результатов измерений.	2	0,5	1,5	Анализ результатов работы
2.4	Представление полученных результатов	2	0,5	1,5	Анализ результатов работы
3	ЦИФРОВОЕ ФИЗИЧЕСКОЕ ИЗМЕРЕНИЕ	8	2	6	
3.1	Цифровая лаборатория Z.LABS и её особенности	1	0,5	0,5	Устный опрос
3.2	Измерение физических величин с помощью датчиков.	1	0,5	0,5	Анализ работы
3.3	Наблюдение зависимости изменения физических величин с помощью датчиков.	2	0,5	1,5	Анализ результатов работы
3.4	Графическая интерпретация экспериментальных данных.	2	0,5	1,5	Наблюдение
3.5	Изучение соответствия кабинета физики санитарным нормам.	2	-	2	Анализ результатов работы
4	Лабораторный эксперимент.	54	27	27	pucora
4.1	Математический и пружинный маятники. Инструктаж по ТБ. Лабораторная работа № 1 «Изучение колебаний пружинного маятника»	2	1	1	Анализ результатов работы
4.2	Нагревание и охлаждение тел. Инструктаж по ТБ. Лабораторная работа № 2 " Определение объема выделяемого тепла при нагревании и	16	1	1	Анализ результатов работы

	охлаждении»				
4.3	Удельная теплота плавления.	2	1	1	Анализ
	Инструктаж по ТБ. Лабораторная				результатов работы
	работа № 3 « Определение удельной				расоты
	теплоты плавления льда»				
4.4	Соединение проводников. Инструктаж	2	1	1	Анализ
	по ТБ. Лабораторная работа № 4 «				результатов работы
	Изучение последовательно и				расоты
	параллельного соединения				
	проводников»				
4.5	Инструктаж по ТБ. Лабораторная	2	1	1	Анализ
	работа № 5 «Изучение смешанного				результатов работы
	соединения проводников»				расоты
4.6	Работа и мощность. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 6 « Измерение				результатов работы
	работы и мощности тока»				расоты
4.7	Количество теплоты. Инструктаж по	2	1	1	Анализ
	ТБ. Лабораторная работа № 7				результатов работы
	«Изучение закона Джоуля - Ленца»				расоты
4.8	КПД .Инструктаж по ТБ. Лабораторная	2	1	1	Анализ
	работа №8 « Изучение зависимости				результатов работы
	мощности КПД источника от				расоты
	напряжения и нагрузки»				
4.9	Закон Ома для участка цепи.	2	1	1	Анализ
	Сопротивление .Инструктаж по ТБ.				результатов работы
	Лабораторная работа № 9 « Изучение				расоты
	закона Ома для полной цепи».				
4.10	Закон Ома для цепи переменного тока.	2	1	1	Анализ
	Инструктаж по ТБ. Лабораторная работа № 10 « Изучение закона Ома для				результатов
	цепи переменного тока»				
4.11	Закон Паскаля. Инструктаж по ТБ. Лабораторная работа № 11 « Закон	2	1	1	Анализ результатов
	Паскаля. Определение давления				результатов
4.12	жидкости» Атмосферное давление. Инструктаж	2	1	1	Анализ
7.12	по ТБ. Лабораторная работа № 12 «		1	1	результатов
	Атмосферное и барометрическое давление. Магдебургские полушария.»				
4.13	Кипение. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 13 « Изучение процесса кипения воды»				результатов
4.14	Удельная теплоемкость. Инструктаж	2	1	1	Анализ
	по ТБ. Лабораторная работа № 14 « Определение удельной теплоемкости				результатов
	вещества»				
4.15	Соленоид. Инструктаж по ТБ. Лабораторная работа № 15 « Изучение	2	1	1	Анализ результатов
	магнитного поля соленоида»	17			работы

4.16	Закон Гей – Люссака. Изобарный	2	1	1	Анализ
	процесс. Инструктаж по ТБ.				результатов
	Лабораторная работа № 16 «				работы
	Исследования изобарного процесса»				I
4.17	Изохорный процесс. Инструктаж по	2	1	1	Анализ
	ТБ. Лабораторная работа № 17 «				результатов
	Исследования изохорного процесса»				работы
4.18	Изотермического процесса.	2	1	1	Анализ
	Инструктаж по ТБ. Лабораторная				результатов
	работа № 18 « Исследования				работы
	изотермического процесса»				
4.19	Сопротивление. Закон Ома для участка	2	1	1	Анализ
	цепи. Инструктаж по ТБ. Лабораторная				результатов
	работа № 19 « Измерение				работы
	сопротивления проводника»				
4.20	Сила трения. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 20« Получение				результатов
	теплоты при трении и ударе»			1	работы
4.21	Реостат. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 21 « Реостат.				результатов
	Управление слой тока в цепи делитель				работы
4.00	напряжения»				
4.22	Электролиты. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 22 «				результатов
4.00	Электрический ток в электролитах»		1	1	работы
4.23	Магнитное поле. Инструктаж по ТБ.	2	1	1	Анализ
	Лабораторная работа № 23 «				результатов
	Исследование магнитного поля				работы
4.24	проводника с током» Электромагнит. Инструктаж по ТБ.	2	1	1	Анализ
4.24	Электромагнит. инструктаж по тв. Лабораторная работа № 24«	2	1	1	результатов
	Лаоораторная раоота № 24« Демонстрация работы электромагнита»				работы
4.25	Самоиндукция . Инструктаж по ТБ.	2	1	1	Анализ
4.23	Лабораторная работа № 25 «	2	1	1	результатов
	Самоиндукция при замыкании и				работы
	размыкании цепи»				раооты
4.26	Переменный ток. Инструктаж по ТБ.	2	1	1	Анализ
0	Лабораторная работа № 26 « Измерение		1	1	результатов
	характеристик переменного тока»				работы
4.27	Итоговое занятие.	2			Анализ
. ,					результатов
					работы

3.

Содержание программы

Тема 1. Введение.

Теория: Вводное занятие. Инструктаж по технике безопасности.

Практика: Наблюдение опытов: волшебная вода, тяжелая газета, загадочная картофелина, подъем тарелки с мылом

Контроль: Беседа, наблюдение.

Тема 2. Измерения в физике.

Теория: Физическая величина. Единицы измерения. Измерительные приборы. Цена деления. Прямое и косвенное измерение. Абсолютная и относительная

погрешности измерений. Границы погрешностей. Запись результатов измерений. Таблицы и графики. Обработка результатов измерений. Обсуждение и представление полученных результатов.

Практика: Определение цены деления различных приборов. Измерение толщины монеты. Определение диаметров тел различными способами. Изучение равномерного движения. Измерение плотности вещества твёрдого тела различными способами.

Контроль: Опрос, наблюдение, собеседование, анализ достоверности результатов.

Тема 3. Цифровое физическое измерение.

Теория: Принцип цифрового физического измерения. Цифровая лаборатория ЛЦИ-16(32). Техника безопасности при работе учащихся вспомогательным лабораторным оборудованием, сопряженным с цифровыми датчиками. Особенности программного обеспечения «Z.LABS». Цифровые датчики. Подключение к ноутбуку. Измерение физических величин с Наблюдение зависимости датчиков. изменения физических помощью Графическая величин датчиков. интерпретация помощью экспериментальных данных.

Практика: Запуск программы на ноутбуке, выбор датчиков. Измерение температуры жидкостными и цифровыми термометрами. Изучение зависимости скорости диффузии от температуры. Изучение процесса теплообмена. Изучение соответствия кабинета физики санитарным нормам. Контроль: Опрос, наблюдение, собеседование, анализ достоверности результатов.

Тема 4. Лабораторный эксперимент

Теория: Лабораторный эксперимент. Подбор лабораторного оборудования. Цель. Оформление паспорта проектной идеи. Планирование деятельности. Работа в группах. Формулировка цели. Сбор и анализ информации. Использование ресурсов сети Интернет. Технология презентации и убедительного выступления.

Практика: Изучение колебаний пружинного маятника. Определение объема, выделяемого тепла при нагревании и охлаждении. Определение удельной теплоты плавления льда. Изучение последовательно и параллельного соединения проводников. Изучение смешанного соединения проводников. Измерение работы и мощности тока. Изучение закона Джоуля — Ленца. Изучение зависимости мощности КПД источника от напряжения и нагрузки. Изучение закона Ома для полной цепи. Изучение закона Ома для цепи переменного тока. Определение давления жидкости. Атмосферное и барометрическое давление. Магдебургские полушария. Изучение процесса кипения воды.

Контроль: Опрос, наблюдение, собеседование, анализ достоверности результатов.

1. Комплекс организационно-педагогических условий.

Календарный учебный график программы ««Цифровая лаборатория физического эксперимента» на 2024-2025 учебный год

Год обучения: первый год.

Количество учебных занятий – 72.

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
			2	введение		
1-2	05-09.09. 2024		2	Вводное занятие. Как изучают явления в природе? Инструктаж по технике безопасности. Теория: Вводное занятие. Как изучают явления в природе? Инструктаж по технике безопасности. Практика: Наблюдение опытов: волшебная вода, тяжелая газета, загадочная картофелина, подъем тарелки с мылом	Комбинированное	Устный опрос

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
			8	измерения в физике		
3-4	12-16.09. 2024		2	Измерение физических величин Теория: Физическая величина. Единицы измерения. Измерительные приборы. Цена деления. Практика:. Определение цены деления различных приборов. Измерение толщины монеты.	Комбинированное	Анализ результатов работы
5-6	19-23.09. 2024		2	Точность измерений. Погрешность. Теория: Прямое и косвенное измерение. Абсолютная и относительная погрешности измерений. Границы погрешностей. Запись результатов измерений. Практика: Определение диаметров тел различными способами.	Комбинированное	Наблюдение
7-8	26- 30.09. 2024		2	Обработка результатов измерений. Теория: Таблицы и графики. Обработка результатов измерений. Практика: Изучение равномерного движения.	Комбинированное	Анализ результатов работы

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
9-10	03-07.10. 2024		2	Представление полученных результатов Теория: Обсуждение и представление полученных результатов Практика: Измерение плотности вещества твёрдого тела различными способами.	Комбинированное	Анализ результатов работы
			8	ЦИФРОВОЕ ФИЗИЧЕСКОЕ ИЗМЕРЕНИЕ		
11	10-14.10. 2024		1	Цифровая лаборатория Z.LABS и её особенности <i>Теория:</i> Принцип цифрового физического измерения. Цифровая лаборатория Z.LABS Техника безопасности при работе учащихся со вспомогательным лабораторным оборудованием, сопряженным с цифровыми датчиками. Особенности программного обеспечения « Z.LABS ». Цифровые датчики. Подключение к ноутбуку. <i>Практика:</i> Запуск программы на ноутбуке, выбор датчиков.	Комбинированное	Устный опрос

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
12	17-21.10. 2024		1	Измерение физических величин с помощью датчиков. Теория: Измерение физических величин с помощью датчиков. Практика: Измерение температуры жидкостными и цифровыми термометрами.	Практическое	Анализ работы
13- 14	24-28.10. 2024		2	Наблюдение зависимости изменения физических величин с помощью датчиков. Теория: Наблюдение зависимости изменения физических величин с помощью датчиков. Практика:. Изучение зависимости скорости диффузии от температуры.	Практическое	Анализ результатов работы
15- 16	31.10- 04.11. 2024		2	Графическая интерпретация экспериментальных данных. Теория: Графическая интерпретация экспериментальных данных Практика: Изучение процесса теплообмена	Практическое	Наблюдение

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
17- 18	14-18.11. 2024		2	Изучение соответствия кабинета физики санитарным нормам. Практика. Изучение соответствия кабинета физики санитарным нормам.	Практическое	Анализ результатов работы
			54	Лабораторный эксперимент.		
19- 20	21-25.11. 2024		2	Лабораторный эксперимент. Изучение колебаний пружинного маятника. <i>Теория</i> Математический и пружинный маятники. Подбор лабораторного оборудования. <i>Практика:</i> Экспериментальное задание № 1. «Изучение колебаний пружинного маятника»	Практическое	Анализ результатов работы
21-22	28-02.12. 2024		2	Лабораторный эксперимент. Определение объема, выделяемого тепла при нагревании и охлаждении. <i>Теория:</i> Нагревание и охлаждение тел. Практика: Экспериментальное задание №2. «Определение объема, выделяемого тепла при нагревании и охлаждении.»	Практическое	Анализ работы

№ π/ π	Дата по плану	Дата по факту	Коли - честв о часов	Тема занятия	Форма занятия	Форма контроля
23- 24	05.12- 16.12. 2024		2	Лабораторный эксперимент. Определение удельной теплоты плавления льда <i>Теория</i> . Удельная теплота плавления. Практика: Экспериментальное задание №3. « Определение удельной теплоты плавления льда»	Практическое	Анализ результатов работы
	19-23.12 2024		2	Лабораторный эксперимент. Изучение последовательно и параллельного соединения проводников. <i>Теория</i> : Соединение проводников. Практика: Экспериментальное задание № 4. «Изучение последовательно и параллельного соединения проводников»	Практическое	Анализ результатов работы
	26-30.12. 2024		2	Лабораторный эксперимент. Изучение смешанного соединения проводников Теория. Смешанное соединения	Практическое	Анализ результатов работы

		проводников.	
		Практика: Экспериментальное задание № 5. «Изучение смешанного соединения проводников»	

№ п/п	Дата по плану	Дата по факту	Коли- чество часов	Тема занятия	Форма занятия	Форма контроля
29- 30	09-14.01. 2025		2	Лабораторный эксперимент. Измерение работы и мощности тока <i>Теория:</i> Работа и мощность. <i>Практика:</i> Экспериментальное задание №6 Измерение работы и мощности тока	Практическое	Анализ результатов работы
31- 32	16- 21.01. 2025		2	Лабораторный эксперимент. Изучение закона Джоуля — Ленца. <i>Теория:</i> Количество теплоты. <i>Практика:</i> Экспериментальное задание №7 «Изучение закона Джоуля — Ленца.»	Практическое	Анализ результатов работы
33- 34	23-27.01. 2025		2	Лабораторный эксперимент. Изучение зависимости мощности КПД источника от напряжения и нагрузки Теория: КПД Практика: Экспериментальное задание № 8«Изучение зависимости мощности КПД источника от напряжения и нагрузки»	Практическое	Анализ результатов работы
35- 36	30-03.02. 2025		2	Лабораторный эксперимент. Изучение закона Ома для полной цепи Теория: Закон Ома для участка цепи. Сопротивление Момпериментальное задание № 9 «	Практическое	Анализ результатов работы

			Изучение закона Ома для полной цепи».		
37 - 38	0610.02. 2025	2	Лабораторный эксперимент. Изучение закона Ома для цепи переменного тока <i>Теория:</i> Закон Ома для цепи переменного тока. <i>Практика:</i> Экспериментальное задание № 10 «Изучение закона Ома для цепи переменного тока».	Практическое	Анализ результатов работы
39 - 40	13- 17.02 2025	2	Лабораторный эксперимент. Закон Паскаля. Определение давления жидкости <i>Теория:</i> Закон Паскаля. <i>Практика:</i> Экспериментальное задание №11 «Закон Паскаля. Определение давления жидкости»	Практическое	Анализ результатов работы
41- 42	20. – 24.02 2025	2	Лабораторный эксперимент. Атмосферное и барометрическое давление. Магдебургские полушария <i>Теория:</i> Атмосферное давление. <i>Практика:</i> Экспериментальное задание № 12 «Атмосферное и барометрическое давление. Магдебургские полушария».	Практическое	Анализ результатов работы
43 - 44	27.02. – 03.03 2025	2	Лабораторный эксперимент. Изучение процесса кипения воды. <i>Теория:</i> Кипение. <i>Практика:</i> Экспериментальное задание №13 «Изучение процесса кипения воды».	Практическое	Анализ результатов работы
45- 46	06. – 10.03 2025	2	Лабораторный эксперимент. Определение удельной теплоемкости вещества» Теория: удельной теплоемкости Практика: Экспериментальное задание № 14 « Определение удельной теплоемкости вещества»	Практическое	Анализ результатов работы

47- 48	13 17.03 2025	2	Лабораторный эксперимент. Изучение магнитного поля соленоида <i>Теория:</i> соленоид <i>Практика:</i> Экспериментальное задание № 15 «Изучение магнитного поля соленоида»	Практическое	Анализ результатов работы
-	2024.03 2025	2	Лабораторный эксперимент. Исследования изобарного процесса. <i>Теория:</i> Закон Гей — Люссака. Изобарный процесс. <i>Практика:</i> Экспериментальное задание № 16 «Исследования изобарного процесса.»	Практическое	Анализ результатов работы
51- 52	27 – 31.03 2025	2	Лабораторный эксперимент. Исследования изохорного процесса. <i>Теория:</i> Изохорный процесс. <i>Практика:</i> Экспериментальное задание № 17 « Исследования изохорного процесса»	Практическое	Анализ результатов работы
53- 54	03- 07 .04. 2025	2	Лабораторный эксперимент. Исследования изотермического процесса. <i>Теория:</i> Изотермического процесса. <i>Практика:</i> Экспериментальное задание №18«Исследования изотермического процесса»	Практическое	Анализ результатов работы
55- 56	10 14. 04. 2025	2	Лабораторный эксперимент. Измерение сопротивления проводника. <i>Теория:</i> Сопротивление. Закон Ома для участка цепи. <i>Практика:</i> Экспериментальное задание №19 «Измерение сопротивления проводника»	Практическое	Анализ результатов работы

57- 58	17- 21.04 2025	2	Лабораторный эксперимент. Получение теплоты при трении и ударе. Теория: Сила трения. Практика: Экспериментальное задание №20«Получение теплоты при трении и ударе»	Практическое	Анализ результатов работы
59- 60	24 28.04 2025	2	Лабораторный эксперимент. Реостат. Управление слой тока в цепи делитель напряжения. Теория: Реостат. Практика: Экспериментальное задание № 21 «Реостат. Управление слой тока в цепи делитель напряжения»	Практическое	Анализ результатов работы
61- 62	0105.05 2025	2	Лабораторный эксперимент. Электрический ток в электролитах. Теория: Электролиты. Практика: Экспериментальное задание №22 «Электрический ток в электролитах»	Практическое	Анализ результатов работы
63- 64	0812.05 2025	2	Лабораторный эксперимент. Исследование магнитного проводника с током. Теория: Магнитное поле. Практика: Экспериментальное задание №23 «Исследование магнитного поля проводника с током»	Практическое	Анализ результатов работы
65- 66	15 19.05 2025	2	Лабораторный эксперимент. Демонстрация работы электромагнита. Теория: Электромагнит.	Практическое	Анализ результатов работы

			Практика: Экспериментальное задание №24«Демонстрация работы электромагнита»		
67- 68	22 26.05 2025	2	Лабораторный эксперимент. Самоиндукция при замыкании и размыкании цепи. <i>Теория:</i> Самоиндукция. <i>Практика:</i> Экспериментальное задание №25 «Самоиндукция при замыкании и размыкании цепи»	Практическое	Анализ результатов работы
69- 70	29.05.2025	2	Лабораторный эксперимент. Измерение характеристик переменного тока. <i>Теория:</i> Переменный ток. <i>Практика:</i> Экспериментальное задание №26 «Измерение характеристик переменного тока»	Практическое	Анализ результатов работы
71- 72	31.05.2025	2	Итоговое занятие.	Комбинированное	Анализ результатов работы

2.1. Условия реализации программы

Одним из важнейших условий реализации образовательной программы является **материально-техническое обеспечение**, которое должно включать в себя необходимое оборудование, инструменты и материалы.

Помещение. Занятия проходят на базе МБОУ «Средняя школа с. Александровка» в физической лаборатории Центра образования естественнонаучной и технологической направленностей «Точка Роста». Помещение соответствует санитарно-гигиеническим требованиям для проведения занятий. В кабинете имеются стандартные рабочие столы и стулья, отвечающие эргономическим требованиям; в наличии шкафы и полки, выставочные витрины для расположения учебной и научной литературы, наглядных пособий, демонстрационного материала, творческих работ учащихся.

Технические средства и оборудование:

Для учителя – ноутбук, интерактивная доска, проектор, МФУ, средства телекоммуникации, демонстрационное оборудование кабинета физики.

Для учащихся — лаборатория цифровая измерительная ЛЦИ-16(32) по физике (Беспроводной мультидатчик, содержащий: датчик уровня рН (диапазон измерений от 0 до 14), датчик напряжения (диапазон измерений от – 15 до +15 В), датчик тока (диапазон измерений от -1 до +1 А), датчик акселерометр (диапазон измерений от -8 до +8g), датчик абсолютного давления (диапазон измерений от 0 до 700 кПа), датчик магнитного поля (диапазон измерений от – 80 до +80 Тл)), ноутбуки с установленным программным обеспечением STLAB для цифровой лаборатории (1 ноутбук на 1-2 учащихся), вспомогательное лабораторное оборудование кабинета физики.

Информационное обеспечение: методические материалы по использованию цифровых лабораторий, видеоматериалы по работе с цифровой лабораторией ЛЦИ-16(32)//URL: http://dml32.ru/, представленные компанией-разработчиком. В наличии компьютерные презентации, учебнометодические и оценочные материалы, разработанные учителем.

Кадровое обеспечение: Программу реализует педагог дополнительного образования, имеющий педагогическое образование.

Для электронного обучения и обучения с применением дистанционных образовательных технологий используются технические средства, а также информационно-телекоммуникационные сети, обеспечивающие передачу по линиям связи указанной информации (цифровые образовательные ресурсы, размещенные на образовательных сайтах http://fcior.edu.ru, http://seninvg07.narod.ru/index.htm, www.nau-ra.ru,

www.vr-labs.ru, https://media.prosv.ru/content, https://myskills.ru/, видеоконференции, вебинары, е-mail, облачные сервисы, платформа *Сферум* (https://sferum.ru), которая позволяет заводить в ней групповые чаты, совершать видеозвонки без ограничения по времени, размещать видео, презентационный материал с инструкцией выполнения заданий, мастер-классы и т.д.).

2.2. Формы аттестации

При реализации программы проводится входной, текущий и итоговый контроль над усвоением пройденного материала учащимися.

Входная диагностика проводится при зачислении ребёнка на обучение по программе, в ходе которой выясняется первоначальный уровень показателей воспитания и социализации учащихся, предметнодеятельностных компетенций. Входной контроль проводится в форме собеседования, мониторинга.

Текущая диагностика проводится на каждом занятии с целью выявления правильности применения теоретических знаний на практике. Текущий контроль может быть реализован посредством следующих форм: наблюдение, индивидуальные беседы, практические работы, отчет по практической работе, защита проектов и т. д. Комплексное применение различных форм позволяет своевременно оценить, насколько освоен учащимися изучаемый материал, и при необходимости скорректировать дальнейшую реализацию программы.

Итоговая диагностика проводится по итогам окончания курса дополнительного образования в форме мониторинга.

Результаты наблюдений и творческие работы обучающихся, аналитические материалы текущего контроля (результаты выполнения практических заданий, презентации проектов, участия в конкурсах) являются основой для анализа и составления аналитической справки для проведения итоговой аттестации обучающихся.

Формы отслеживания и фиксации образовательных результатов: аналитическая справка о реализации программы и уровне ее освоения учащимися, фотоматериалы, отзывы детей и родителей, грамоты, дипломы, творческая работа, проектная работа, материалы диагностики.

Формы предъявления и демонстрации образовательных результатов: аналитическая справка о результатах освоения учащимися учебного материала программы за соответствующий учебный период,

портфолио учащихся, анализ проведения открытого занятия и творческого отчета учащихся.

Методы контроля: опрос; педагогическое наблюдение; анализ, самоанализ; собеседование; выполнение творческих заданий; участие детей в экспериментальных турах олимпиад, конкурсах и фестивалях различного уровня.

Оценочные материалы

Занятия не предполагают отметочного контроля знаний, поэтому целесообразнее применять различные критерии для выявления, фиксации и предъявления результатов освоения программы.

Способом определения результативности реализации программы служит мониторинг образовательного процесса. Процедура мониторинга проводится в начале, после изучения раздела и в конце освоения программы.

Критериями эффективности реализации программы являются динамика основных показателей воспитания и социализации учащихся, предметно-деятельностных компетенций.

Основные критерии освоения содержания программы

	Уровень выраженности оцениваемого качества			
Критерий	1 балл (низкий уровень)	2 балла (средний уровень)	3 балла (высокий уровень)	
Мотивация	Равнодушен к	Осваивает мате-	Стремится получать	
учебной	получению	риал с интересом,	прочные знания,	
деятельности	знаний,	но познавательная	активно включается	
	познавательная	активность ограни-	в познавательную	
	активность	чивается рамками	деятельность, про-	
	отсутствует	программы	являет инициативу	
Степень	Усваивает	Усваивает матери-	Учебный материал	
обучаемости	материал только	ал в рамках заня-	усваивает без труда,	
	при	тия, иногда требу-	интересуется допол-	
	непосредственной	ется незначитель-	нительной информа-	
	помощи педагога	ная помощь со	цией по предлага-	
		стороны педагога	емой деятельности	

Навыки	Планирует и	Может планиро-	Умеет планировать
учебного труда	контролирует	вать и контролиро-	и контролировать
	свою деятельность	вать свою деятель-	свою деятельность,
	только под	ность с помощью	организован, темп
	руководством	педагога, не всегда	работы высокий
	педагога, темп	организован, темп	
	работы низкий	работы не всегда	
		стабилен	
Теоретическая	Знает фрагментар-	Знает физические	Знает физические
подготовка	но изученные фи-	закономерности, но	
	зические процессы	для полного	понимает процессы
	и закономерности.	раскрытия темы	
	Изложение мате-	требуются	ний. Может дать
	риала сбивчивое,	дополнительные	логически выдер-
	требующее кор-	вопросы.	жанный ответ, де-
	ректировки		монстрирующий
	наводя-щими		полное владение материалом.
	вопросами		1
Практическая	Требуется	Требуется перио-	Самостоятельный
подготовка	постоянная	дическое консуль-	выбор методов ана-
	консультация	тирование о том,	лиза и обработки
	педагога	какие методы ис-	экспериментальных
	при выполнении	_	результатов, сво-
	заданий	анализе резуль-	бодное владение
		татов измерений,	программным
		программирование	обеспечением
			цифровой образова-
		цифровой среде.	тельной среды.

После оценки каждого параметра результативности освоения раздела или программы, все баллы суммируются. На основе общей суммы баллов определяется общий уровень освоения раздела или программы в соответствии с нижеприведенной шкалой:

- 1 5 баллов раздел или программа освоены на низком уровне;
- 6 10 баллов раздел или программа освоены на среднем уровне;
- 11 15 баллов раздел или программа освоены на высоком уровне.

Применение данной методики в долгосрочном периоде позволяет определить динамику личностного развития каждого ребёнка.

2.3. Методические материалы

Программа ориентирована на коммуникативный исследовательский подход в обучении, в котором прослеживаются следующие этапы субъектной деятельности учащихся и педагога: совместное творчество педагога и учащихся по созданию физической проблемной ситуации — анализ найденной проблемной ситуации (задачи) — четкое формулирование физической части проблемы (задачи) — выдвижение гипотез — разработка моделей (физических, математических) — прогнозирование результатов развития во времени экспериментально наблюдаемых явлений — проверка и корректировка гипотез — нахождение решений — проверка и анализ решений — предложения по использованию полученных результатов для постановки и решения других проблем по изучаемой теме, по ранее изученным темам курса физики.

При проектировании исследовательской деятельности учащихся в качестве основы берется модель и методология исследования, разработанная и принятая в сфере науки:

- Постановка проблемы;
- Изучение теории, посвященной данной проблематике;
- Подбор методик исследования и практическое овладение ими;
- Сбор собственного материала;
- Его анализ и обобщение;
- Собственные выводы.

Для формирования мотивации совместной учебной деятельности необходимо:

- создать ситуацию для возникновения у обучающегося общего положительного отношения к коллективной форме работы.
- внимательно подбирать состав группы. При этом надо учитывать желание детей работать друг с другом; соотношение их реальных возможностей и их представлений о своих способностях; индивидуальные особенности учащихся (уровень их знаний, темп работы, интересы и т.д.).
- правильно отбирать задания и формы коллективной деятельности.

Очень важно научить учащихся видеть многочисленные возможности применения абстрактных и, казалось бы, далеких от жизни математических элементов, физических законов и идей в самых разнообразных областях деятельности. Творческие способности, как любые другие, требуют постоянно упражнения, постоянной тренировки. Каждая самостоятельно решенная задача, каждое самостоятельно преодоленное затруднение формирует характер и обостряет творческие способности. Без искреннего увлечения проблемой, без внутреннего убеждения, что дальше нельзя существовать без поиска решения, без длительного и упорного размышления над предметом поиска и многократного возвращения к осмыслению различных возникающих при этом вариантов, успех не придет.

Учебный физический эксперимент, физические исследования, как теоретические, так и в виде практических заданий, играют огромную роль в освоении учащимися научного метода познания. В условиях современной школы недостаточно просто давать знания и показывать опыты, необходимо вовлекать в процесс самих учащихся, тем самым, обучая их навыкам исследовательской деятельности, которая позволяет привлечь учащихся к работе с первоисточниками, проведению экспериментов и трактовке его результатов.

Одной из наиболее рациональных форм организации исследовательской деятельности является работа учащихся в парах или тройках, используя ролево-игровую методику, когда учащиеся могут дополнять друг друга, исполняя ту или иную роль: теоретик, практик, физик, биолог, и т.д. В этом случае качество работы, уровень подготовки и результативность резко повышаются, так как учащиеся неоднократно обсуждают свою тему, советуются, спорят, взаимно проверяют выученный материал, используют ошибки и недочеты. Поскольку программа состоит из исследовательских задач, то в ней небольшое количество лекционных занятий. Их аналогом лишь в какой-то мере можно считать информационно-

инструктивную часть, в ходе которой педагог в сжатой форме представляет необходимые сведения об изучаемом явлении, вместе с учащимися формирует задачу, дает информационные ссылки, которые могут понадобиться учащимся в процессе работы над ней.

Особое внимание учащихся фиксируется на выборе и разграничении физической и математической модели рассматриваемого явления, отрабатываются стандартные алгоритмы решения физических задач в стандартных ситуациях и в измененных или новых ситуациях. При решении задач широко используются аналогии, графические методы, физический эксперимент.

Для преодоления учащимися затруднений в процессе работы педагог оказывает в зависимости от интеллектуально-эмоциональных возможностей детей разные виды помощи. Это стимулирующая помощь, эмоционально-регулирующая помощь, направляющая помощь. Создаётся благоприятная обстановка для того, чтобы научить детей оценивать свою собственную работу, сравнивать полученный результат с ранее достигнутыми результатами.

Bo проведения дистанционных занятий разнообразить время учебную деятельность учащихся цифровых поможет использование инструментов. Цифровые инструменты позволят учащимся закрепить практические навыки по созданию лабораторной установки, проведению экспериментов и анализу результатов вне стен школьной лаборатории и даже школы. Для этого используются следующие ресурсы:

- 1. ЦИФРОВАЯ ЛАБОТАРОРИЯ ПО ФИЗИКЕ для проведения демонстраций, лабораторных работ и практикумов: <u>www.nau-ra.ru</u>
- 2. ВИРТУАЛЬНАЯ ЛАБОРАТОРИЯ ПО ФИЗИКЕ для проведения виртуальных демонстраций, лабораторных работ и практикумов: www.vr-labs.ru
- 3. Видеоуроки по физике Российской электронной школы https://resh.edu.ru/subject
- 4. Видеотека учебников по физике: https://media.prosv.ru/content
- 5. Глобальная школьная лаборатория. Площадка для проведения сетевых проектов: https://globallab.org/ru/#.YPagaqYzaUk
- 6. Образовательная платформа «Учи.ру». Физика 7 классы: https://uchi.ru/
- 7. Мои достижения. Сервис с возможностью выполнения диагностических работ on-line: https://myskills.ru/

Список литературы

Для педагога:

- 1. Акатов Р.В. Компьютер для учебного физического эксперимента [Текст]: Учебное пособие / Р.В.Акатов. Глазов: ГГПИ, 1995. 94 с.
- 2. Анциферов Л.И., Пищиков И.М. Практикум по методике и технике школьного физического эксперимента [Текст] / Л.И.Анциферов, И.М.Пищиков. М.: Просвещение, 1984. 254 с.
- 3. Горячкин Е.Н., Иванов С.И., Покровский А.А. Руководство к практикуму по методике и технике школьного физического эксперимента [Текст] / Е.Н.Горячкин, С.И.Иванов, А.А.Покровский. М., 1940.-320 с.
- 4. Поваляев О.А., Объедков, Е.С. Перспективы использования компьютерного лабораторного комплекса в преподавании физики в школе [Текст] / О.А.Поваляев, Е.С.Объедков // Материалы конференции «Образование-94». Москва, 1994. С. 42.
- 5. Покровский А.А. Развитие школьного физического эксперимента и приборостроения.- Физика в школе, 1967, С.6-17.
- 6. Смирнов А.В., Рыльков С.А., Степанов С.В. Школьный физический кабинет [Текст] : Учебное пособие / А.В.Смирнов, С.А.Рыльков, С.В.Степанов. М.: Прометей, 1992. 120 с.
- 7. Шовкопляс И.В. Физический эксперимент как одно из основных средств развития творческих способностей учащихся // Имидж. 2005. №4. С. 53-55

Для учащихся:

- 1. Белько Е. Веселые научные опыты [Текст]/ Е. Белько. ООО «Питер Пресс», 2012.
- 2. Перельман. Я. И. Занимательная физика[Текст]. Д.: ВАП. 1994.
- 3. Почемучка [Текст]/ Под редакцией А.Алексина, С.Михалкова Издательство «ПедагогикаПресс», 1993
- 4. Журналы «Юный техник», Москва из во «Молодая гвардия»;

Для родителей:

- 1. Альтшуллер Г.С. Творчество как точная наука. // Советское радио, 1979.
- 2. И.Я Ланина «Развитие интереса к физике», М, Просвещение, 1999
- 3. «Нанотехнологии. Азбука для всех». Сборник статей под редакцией Ю. Третьякова, М., Физматлит, 2007.
- 4. Иллюстрированная энциклопедия «Я открываю мир», Москва из во «Астрель» 2002г.

Интернет-ресурсы:

- 1. Электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов http://school-collection.edu.ru/
- 2. Электронные образовательные ресурсы каталога Федерального центра информационно-образовательных ресурсов http://fcior.edu.ru/
- 3. Сайт для учащихся и преподавателей физики. На сайте размещены учебники физики для 7-11 классов, описания лабораторных работ. Учителя здесь найдут обзоры учебной литературы, тематические и поурочные планы, методические разработки. Имеется также дискуссионный клуб http://www.fizika.ru/
- 4. Методика физики http://metodist.i1.ru/
- 5. Кампус http://www.phys-campus.bspu.secna.ru/
- 6. Образовательный портал (имеется раздел «Информационные технологии в школе») http://www.uroki.ru/
- 7. Виртуальный методический кабинет учителя физики и астрономии http://www.gomulina.orc.ru
- 8. Сайт кафедры методики преподавания физики МПУ http://www.mpf.da.ru/

Пример отчета по лабораторной работе или опыта-исследования

Тема: «	>>
(Отвечает на вопрос: «По какому поводу делали?»)	
Цель:	
(Отвечает на вопрос: «Для чего делали?» Важно помнить, что именно це	ель
работы нацеливает на выводы, которые вы должны сделать в конце данн	юй
работы. Цель должна соответствовать выводам, а выводы - поставленниеми.)	юй
Оборудование:	
(Отвечает на вопрос: «Что необходимо для выполнения работы?», а так	же

«Чем научились пользоваться за время выполнения работы?»)

Материалы для собеседований по итогам разделов

Собеседование №1

(входной контроль)

- 1. Какие физические величины ты знаешь?
- 2. Чему равна цена деления ученической линейки?
- 3. Является ли физическое измерение точным? Ответ обоснуй.
- 4. Что такое погрешность?
- 5. Как ты понимаешь задачи физического исследования?
- 6. Приведи пример гипотезы в физическом эксперименте?

Собеседование №2

(текущий контроль)

- 1. Чем отличаются прямые измерения от косвенных?
- 2. Как найти относительную погрешность?
- 3. Какие методы косвенного измерения ты знаешь?
- 4. Что такое промах?
- 5. Как обозначается класс точности в российских приборах?
- 6. Как найти верхнее и нижнее значение физической величины?

Собеседование №3

(текущий контроль)

- 1. Почему компьютер напрямую не работает с аналоговым сигналом?
- 2. Для чего нужен АЦП?
- 3. Что собой представляет цифровой сигнал?
- 4. Почему информацию лучше представлять через графики?
- 5. 5. Расскажите про общий принцип работы датчика.
- 6. Что такое частота дискредитации?

Собеседование №4

(текущий контроль)

- 1. Что определяет основное направление исследования?
- 2. Какой должна быть цель (по технологии SMART)?
- 3. Чем отличается текст исследовательской работы от доклада?
- 4. Говорят, тема актуальна. Как это понимать?
- 5. Как ты понимаешь предмет исследования?
- 6. Чему должны соответствовать выводы?

Примерные темы проектов

- 1. Измерение физических характеристик домашних животных.
- 2. Приборы по физике своими руками.
- 3. Картотека опытов и экспериментов по физике.
- 4. Физика в игрушках.
- 5. Где живёт электричество?
- 6. Атмосферное давление на других планетах.
- 7. Физика в сказках.
- 8. Простые механизмы вокруг нас.
- 9. Почему масло в воде не тонет?
- 10. Парусники: история, принцип движения.
- 11. Определение плотности тетрадной бумаги и соответствие её ГОСТу.
- 12. Мифы и легенды физики.
- 13. Легенда об открытии закона Архимеда.
- 14. Как определить высоту дерева с помощью подручных средств?
- 15. Исследование коэффициента трения обуви о различную поверхность.
- 16. Измерение плотности тела человека.
- 17. Измерение высоты здания разными способами.
- 18. Измерение времени реакции подростков и взрослых.
- 19. Зима, физика и народные приметы.
- 20. Дыхание с точки зрения законов физики.
- 21. Действие выталкивающей силы.
- 22. Архимедова сила и человек на воде.
- 23. Агрегатное состояние желе.